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Abstract 
Space Vector Modulation is perhaps the common technique mostly applied to drive three-phase 
voltage-source inverters. During every switching period it calculates three duty cycles in order to 
generate a suitable pulse sequence. This paper presents a new, faster and, most important, simpler 
method to compute these time values without using either trigonometric functions or even Clarke or 
Park transformations. The result is a light-weight algorithm easier to implement in small digital signal 
processors or microcontrollers. The relationship between SVM and PWM is also explained. 

Introduction 
Space Vector Modulation (SVM) was originally developed by Van der Broeck et al. [1] as a vector 
approach to pulse width modulation (PWM) for three-phase voltage source inverters (VSI). Compared 
with the former three-phase sinusoidal modulation method (SPWM) it has the advantages of lower 
current harmonics and a possible higher modulation index [1]. This technique has a wide linear 
modulation range with no need of distorted modulation and it also guarantees that only one switch 
changes at any time. 
 
During two decades, SVM has been considered a reference for most analysis, comparisons and 
physical verifications [2]–[6]. Recently, some research efforts have been directed to develop 
multilevel inverters and matrix converters based on SVM method [7], [8]. However, recent studies 
have been more critical with SVM and several solutions in time domain are defended as simpler 
and/or faster [9], [10]. 
 
This paper improves the equations used to compute SVM duty cycles for two-level inverters and 
reveals its relationship with carrier-based PWM methods. 

Classical SVM 
The structure of a typical three-phase voltage source power inverter is shown in Fig. 1. The 
relationship between switching variables (Su, Sv, Sw) and line-to-line voltages (VUV, VVW, VWU) is given 
by (1), where Vdc is the bus voltage and Sk is '1' or '0' when the upper or lower transistor of phase k is 
on, respectively. Choosing a neutral point 'N' that satisfies (2) and equating (1) it yields (3). 
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Fig. 1: Hex bridge, with the upper switches used to define switching states. 
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Applying the Clarke transformation to these output voltages, equation (4), it leads to a 2-D space 
vector V with the same instantaneous information in a stationary reference frame. The behavior of this 
vector is well known: when a balanced and sinusoidal three phase voltage system is analyzed, with 
constant magnitude Vo and constant frequency ωo, the space voltage representation is a vector of 
constant length Vo rotating with constant angular speed ωo. Likewise, when this transformation is 
applied to the inverter phase-to-neutral voltages the result are eight different vectors according to the 
eight possible switches states (see equation (5) and Fig. 2). The rotating reference vector vo* must be 
inside the hexagon for linear modulation. 
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Fig. 2: Space vectors of inverter voltages and other definitions. 
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To obtain the required output space vector vo*, that usually is a rotating vector with constant module 
and pulsation, conduction times of the inverter switches are modulated according to the angle and 
magnitude of that reference. The null vectors (VZ ≡ V0 = V7), and two space vectors adjacent to vo*, Vi 
and Vj, are chosen and modulated as follows: 
 
 jjiiZZo ddd VVVv ++=∗  (6) 
 
Duty cycles of these vectors can be computed using polar coordinates (see [1] for further details) by 
means of (7) [1], [6], [10], [11], where θr is the relative angle between vo* and Vi vectors (0 ≤ θr ≤ 
π/3), and m is the modulation index (0 ≤ m ≤ 1) defined as m = √3·Vo/Vdc. 
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This method calculates all information needed to generate suitable switching sequences (usually d0 = 
d7 = dZ / 2), but its straightforward implementation needs the computation of two 'sin(x)' functions [11] 
and one division by Vdc. This division can be computed using a polynomial approach, but 
trigonometric functions require either big lookup tables or a time consuming process. 
 
In addition, a previous operation is required: the sector of vo* must be determined, because it is 
necessary to know which one of the inverter voltage vectors are adjacent to the given reference (see 
Fig. 2), in order to solve (7). For this operation the reference phase value can be used [12]. 

A known improvement of SVM 
The objective of space vector PWM technique is to approximate the reference phase-to-neutral voltage 
vector [vUN* vVN* vWN*]T or its equivalent space vector vo* by a combination of the eight switching 
patterns. One simple means of approximation is to require the average output of the inverter in a small 
switching period TS to be the same as the average of vo* in the same period, which for a switching 
frequency much higher than the fundamental one it is assumed constant during one switching cycle. 
This requirement, known as “per-carrier-cycle volt-second balance” principle [5], has been shown in 
(6), but can be exploited in a different way: 
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As the value of TZ has no effect in (8) because of the null magnitude of VZ, this equation can be used 
to compute Ti and Tj as shown in (9), where P is defined at (10); TZ is finally computed using (11). 
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The matrix P is sector dependent and can be arranged (see table I) in such a way that a one-upper-
switch-on vector (V1, V3 or V5) is chosen as Vi and a two-upper-switches-on vector (V2, V4 or V6) is Vj. 
Hence it is easier for a digital signal processor (DSP) the generation of the typical V0 - Vi - Vj - V7 - Vj 
- Vi - V0 sequence during TS, thus reducing the average switching frequency. These expressions have 
been widely used [8], [9], [12] rather than (7) because it is easy to implement them on DSP processors. 

Table I: Transformation matrices for each sector under SVM. 
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Proposed method for SVM 
Computations involved in (9) and (11) are not complex and several implementations of that method 
are used in the reviewed literature. However, a simpler set of equations can be obtained solving them 
in an analytical way. To do so, it will be assumed, without loss of generality, a reference phase voltage 
between 0 and π/3, thus V1 and V2 will be used jointly with V0 and V7 to generate vo*. Equation (9) and 
table I yield to: 
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Equating (12) it leads to: 
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However, applying (4) to (13) it yields to even simpler expressions (see [6] for a different approach): 
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In the same way, equating (11) it yields to the following expression, related with (14): 
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Equations (14) and (15), valid for sector I, show that SVM duty cycles can be computed without using 
the space vector transformation: actually, only the original reference voltages in the three-phase 
stationary reference frame are needed. The corresponding expressions for all sectors are shown in 
table II. 

Table II: Proposed expressions to compute SVM duty cycles. 

Sector Duty cycles 
 

Sector Duty cycles 

di = T1 / TS =        (vUN* – vVN*)/Vdc 
 

di = T5 / TS =     – (vVN* – vWN*)/Vdc 

dj = T2 / TS =        (vVN* – vWN*)/Vdc 
 

dj = T4 / TS =     – (vUN* – vVN*)/Vdc 
I 

0–π/3 
dZ = TZ / TS = 1 + (vWN* – vUN*)/Vdc 

 

IV 
π–4π/3 

dZ = TZ / TS = 1 – (vWN* – vUN*)/Vdc 

di = T3 / TS =     – (vUN* – vVN*)/Vdc  
 

di = T5 / TS =        (vWN* – vUN*)/Vdc 

dj = T2 / TS =     – (vWN* – vUN*)/Vdc 
 

dj = T6 / TS =        (vUN* – vVN*)/Vdc 
II 

π/3–2π/3 
dZ = TZ / TS = 1 – (vVN* – vWN*)/Vdc 

 

V 
4π/3–5π/3 

dZ = TZ / TS = 1 + (vVN* – vWN*)/Vdc 

di = T3 / TS =        (vVN* – vWN*)/Vdc 
 

di = T1 / TS =    – (vWN* – vUN*)/Vdc  

dj = T4 / TS =        (vWN* – vUN*)/Vdc 
 

dj = T6 / TS =    – (vVN* – vWN*)/Vdc 
III 

2π/3–π 
dZ = TZ / TS = 1 + (vUN* – vVN*)/Vdc 

 

VI 
5π/3–2π 

dZ = TZ / TS = 1 – (vUN* – vVN*)/Vdc 
 
These SVM duty cycles may also be computed using the line-to-line representation of the reference 
voltages (vUV* = vUN* – vVN*; vVW* = vVN* – vWN*; vWU* = vWN* – vUN*) yielding to even simpler and 
faster expressions. 
 
Moreover, the choice of the reference sector is also an easy task when line-to-line instantaneous 
voltages are used rather than space vector ones. For example, on sector I, it is straightforward to verify 
that vUN* ≥ vVN* ≥ vWN*, thus vUV* ≥ 0 and vVW* ≥ 0 there. Similar expressions can be found for all 
sectors, as shown below. 
  
Using all these ideas, the SVM timing computation can be completed using the following algorithm. 
Its implementation is straightforward using high level or even low level DSP programming languages: 

Algorithm I: SVM implementation using the proposed method. 
ksvm = TS / Vdc ; 
if (vuv* >= 0) { 
 if (vvw* >= 0) {   // This is for sector I 
  Ti =  ksvm * vuv*; Vi = V1 (100); 
  Tj =  ksvm * vvw*;  Vj = V2 (110); 
 } else if (vwu* >= 0) {  // This is for sector V 
  Ti =  ksvm * vwu*; Vi = V5 (001); 
  Tj =  ksvm * vuv*;  Vj = V6 (101); 
 } else {    // This is for sector VI 
  Ti = – ksvm * vwu*; Vi = V1 (100); 
  Tj = – ksvm * vvw*; Vj = V6 (101); 
 } 
}  
// (continue at right) 

// (continue from left) 
else { 
 if (vvw* < 0) {   // This is for sector IV 
  Ti = – ksvm * vvw*; Vi = V5 (001); 
  Tj = – ksvm * vuv*;  Vj = V4 (011); 
 } else if (vwu* < 0) {  // This is for sector II 
  Ti = – ksvm * vuv*; Vi = V3 (010); 
  Tj = – ksvm * vwu*; Vj = V2 (110); 
 } else {    // This is for sector III 
  Ti =  ksvm * vvw*; Vi = V3 (010); 
  Tj =  ksvm * vwu*;  Vj = V4 (011); 
 } 
} 
TZ = TS – Ti – Tj ;      // This is for all sectors 

Equivalence between SVM and PWM 
Equation (14) also produces an additional result, pointed out previously in the literature: SVM and 
PWM can be equivalent with small modifications [4], [9], [10]. Kwasinski et al. [9] state that SVM 
provides the same switch action and inverter output as a double-sided uniform-sampling PWM 
(UPWM) process with injected triple-n harmonics. SVM and UPWM always yield the same results for 
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the active vectors, but SVM leaves a degree of freedom in the partitioning of zero vectors [5], [6], 
likewise PWM methods may add different zero-sequence signals to the modulation waves [5]. This 
paper agrees with that conclusion, but presents a different approach to this issue. 
 
Firstly consider Fig. 3. It represents a classical PWM arrangement with distorted modulation, using 
±Vdc/2 as carrier limits: a triangular waveform with 25% magnitude (in bold dashed line) has been 
added to all arm voltage references to extend up the modulation index [2], [10]; as this signal only has 
triple-n harmonics and they form zero-sequence systems, they produce no currents in floating loads. 
All voltages in this figure are referred to the DC bus midpoint, named 'M' in Fig. 1: carrier limits, 
phase voltage modulators, and also the AC neutral point voltage, vNM, whose significant component 
matches the zero-sequence signal injected. 
 

 
 

Fig. 3: Classical PWM arrangement with distorted modulators. 
 
The same situation may be considered from a different point of view for symmetrical loads. When all 
voltages are referred to the AC neutral floating point main voltage, named 'N', Fig. 3 is transformed 
into Fig. 4. Phase-to-neutral voltage references have no zero-sequence component (their sum is zero), 
so they have no distortion; the voltage of the DC bus midpoint, named ‘M’, referred to the load neutral 
point, is also a triangular wave (at least its significant component) but now its sign is changed; finally, 
carrier limits are not constant, because of the variation of the vMN voltage main component. Noticeably, 
a digital implementation of this arrangement would be complicated, but it reveals interesting details. 
 

 
 

Fig. 4: A different perspective of PWM, referring all signals to the load neutral point. 
 
In this alternative PWM arrangement (Fig. 4), a high frequency carrier signal of constant height (equal 
to Vdc), but with time varying limits, intercepts three pure-sinusoidal phase-to-neutral voltage 
references and decides the switch states as usual ('0' when carrier is above each reference, '1' when it is 
below) [2]. Then, it follows that, for sector I (these results can be applied to all sectors), the time 
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period required by vector V1 (100) is proportional to TS/Vdc, an almost constant value, and also 
proportional to the difference between phase voltages vUN* and vVN* (matching what was stated in 
table II and algorithm I). In the same way, vector V2 (110) must be proportional to the difference 
between phase voltages vVN* and vWN*. Null vectors V0 (000) and V7 (111) fill the spare time at 50%. 
Actually, the same results are obtained when Fig. 3 is used instead of Fig. 4, because zero-sequence 
components modify all modulator waves in the same amount at any time. 
 
A second detail clearly shown in Fig. 4 is the relationship between vMN and the partitioning of TZ: 
active vectors (Vi and Vj) are related only with the line-to-line output voltages [6], while zero vectors 
(V0 and V7) decide the shape of the zero-sequence voltage injected. A triangular wave results for vMN 
when T0 equals T7, but other options are clearly possible [5], [6]. 

Simulations and experimental results 
Several simulations and physical implementations have been developed to validate these results. A 10 
kVA 3-phase VSI connected to an L-R-E load (see the structure in Fig. 1) has been simulated using 
our own graphical environment [13]; its main results are shown in Figs. 5 and 6. In such simulation, 
the DC-link was Vdc = 595 V, the line-to-line 50 Hz output voltage was Vac = 400 V (rms), the 
switching frequency was fS = 6 kHz and the electrical load was resistive (R = 16 Ω) connected by 
means of a simple inductance (L = 2000 µH). 
 
Inverter duty cycles were computed on every switching period using the equations shown in table II 
with d0 = d7, then PWM signals were generated using a triangular carrier with a resolution of 250 ns 
neglecting dead-band effects, and all simulated signals were sampled at 200 KSPS. The output voltage 
(Fig. 5-c) is so noisy because of the pure resistive nature of the load (i.e. E = 0 V). 
 

 

Fig. 5: Simulation of a three-phase 10 kVA VSI connected to a symmetrical and pure resistive load. 
Four images are (a) inverter phase-to-neutral voltage for phase 'U', (b) inverter gate signals through 
a low-pass filter (second order at 1 kHz), (c) phase-to-neutral voltages on the resistive load, and (d) 
neutral point voltage, referred to the DC midpoint, through a low-pass filter (second order at 1 kHz). 
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Fig. 6: Frequency spectrum, from DC to 20 kHz, computed for Fig. 5-c. 
 
In order to investigate the validity of these ideas and their practical capabilities, experimental results 
were obtained by applying the proposed SVM method using a Texas Instruments TMS320F2812 
development board that achieves 150 MIPS. The source code was written in C and compiled using 
Code Composer Studio. It generates three 50 Hz sinusoidal references, selects the inverter sector and 
computes all switching duty cycles based on the proposed algorithm; then it configures three PWM 
generators to work at 5 kHz. The main results can be seen in Figs. 7 and 8. 
 

  
 

Fig. 7: Inverter 5 kHz gate signal generated by a 
TMS320F2812 DSP using the proposed SVM 
technique, with no filtering (CH1, above) and 
filtered with R = 2.2 kΩ and C = 0.27 µF, i.e. 
first order at 1680 Hz (CH2, below). 

 

Fig. 8: The difference between two gate signals 
(CH1 and CH2, above) will produce a line-to-
line output voltage free of triple-n harmonics 
(Matem = CH1 – CH2, in the middle). 
 

Conclusion 
This paper has presented a new, faster and, most important, simpler method to compute SVM duty 
cycles without using either trigonometric functions or even Park or Clarke transformations. The result 
is a light-weight algorithm easier to understand. Its implementation is straightforward in low-end 
digital signal processors or even small microcontrollers. 
 
The relationship between SVM and PWM has also been explained using a different point of view: 
referring all voltages to the AC neutral point. Doing so, arm voltage references have no distortion, but 
time varying limits appear for PWM carrier. The advantage is that they allow an equally wide linear 
modulation range with no need of distorted modulation, and it also explains how triple-n harmonics 
are injected with no effects on inverter output voltages when floating and symmetrical loads are used. 
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