
Application of ASM++ methodology on the design of a DSP processor

S. de Pablo, S. Cáceres, J.A. Cebrián
University of Valladolid

E.T.S.I.I., Paseo del Cauce, s/n
47011 Valladolid (Spain)

sanpab@eis.uva.es

 M. Berrocal
eZono AG

Winzerlaerstrasse 2
07745 Jena (Germany)
manuel@ezono.com

Abstract

This article presents the application of a graphical
methodology used to develop a Digital Signal Processor
designed for FPGA. The instruction set and main
features of this processor are introduced. Then, a
modified Algorithmic State Machine methodology,
named ASM++, is applied to fully describe the
processor implementation. This processor has been
simulated and physically tested on Xilinx Spartan-3
devices, achieving 37.5~75 MIPS and up to 150 MOPS
running at 75 MHz.

1. Introduction

Most intellectual property (IP) modules are designed
as synchronous digital circuits using a standard hardware
description language (HDL), usually VHDL or Verilog.
Designers usually prefer a text-based tool to describe
their circuits because editing and managing texts is
easier than dealing with the arrangement of schematics.
Compared to schematic entry, productivity is increased,
mostly when parametrical modules are required.

To assist designers in their daily job, several visual
tools have been developed to facilitate the circuit
behavior description and understanding, namely Finite
State Machines (FSM) and Algorithmic State Machine
(ASM) [1], [3]. However, these tools are limited in their
scope, so they are applied only on small state machines
and circuits.

This paper presents several modifications of standard
ASM diagrams with the aim of applying this
methodology to design real-life circuits, document them
and ease their supervision [8]. As an example, this
methodology has been successfully applied in the design
of an FPGA based DSP processor.

2. The DSPuva18 processor

The DSPuva18 processor is based on the former
DSPuva16 [6], a Digital Signal Processor developed for

Power Electronic applications [2]. These are the main
features of this new processor and their improvements:

• Its computational instructions are executed using
two clock cycles, rather than four [6], thanks to the
use of an FPGA hardwired multiplier.

• Its control instructions (call, ret, jp, …) are usually
executed in one clock cycle.

• It has adaptive conditional jumps and returns: it
introduces one or two wait states to leave previous
operations to finish.

• The program length can be up to 64K instructions.
• It can execute from 16 to 128 nested subroutines.
• The data memory is up to 64K words, with fast

direct and indirect access (two clock cycles).
• It has direct access to 256 ports/devices.
• The instruction set, as shown in table 1, has been

designed around 17 basic instructions, but most of
these instructions lead to more possibilities.

• It has access to immediate constants in program
code to ease filter implementation.

• An implicit access to last port used, with write back
capability, has been introduced to speed up filters.
It allows up to four operations per instruction.

• The range of fixed-point registers and values can be
selected at instantiation time between ±1, ±2, ±4
and ±8. This feature eases in-circuit debugging.

As can be seen, some of these features are common
with other processors, but other ones are new. The basic
instruction set of this processor is shown below.

Table 1. DSPuva18 basic instruction set.

OpCode Mnemonic Function

0000 dddd dddd dddd call <destination-address> Jump to a subroutine.

0001 dddd dddd dddd goto <destination-address> Unconditional jump.

0010 0fff dddd dddd jpFLAG <relative-jump> Conditional jump.

0010 1fff •••• •••• retFLAG Conditional return.

0011 kkkk kkkk kkkk imm K12 Prepare a constant.

0100 kkkk kkkk nnnn rN = port(K8) Read from a direct port.

0101 kkkk kkkk nnnn port(K8) = rN Write to a direct port.

0110 •••• bbbb nnnn rN = mem({rB,K16}) Read from memory.

0111 •••• bbbb nnnn mem({rB,K16}) = rN Write to memory.

1000 sfff bbbb nnnn ifFLAG rN = [–]{rB,K16} Conditional assignment.

1001 xxxx bbbb nnnn rN = fx({rN,*LP},{rB,K16}) Extra functions.

1010 nnnn bbbb aaaa rN = {rA,*LP} + {rB,K16} Addition.

1011 nnnn bbbb aaaa rN = {rA,*LP} – {rB,K16} Subtraction.

1100 nnnn bbbb aaaa rN = {rA,*LP} * {rB,K16} Multiply two values.

1101 nnnn bbbb aaaa rN = – {rA,*LP} * {rB,K16} Multiply and change sign.

1110 nnnn bbbb aaaa rN += {rA,*LP} * {rB,K16} Positive accumulation.

1111 nnnn bbbb aaaa rN –= {rA,*LP} * {rB,K16} Negative accumulation.

This basic instruction set is extended as seen on tables

2 and 3. Additionally, most instructions allow the use of
a register ('rB') or a 16-bit constant ('K16'), easing
constant coefficient filter implementation. This constant
is built using four bits of the current instruction and
twelve bits of the previously executed 'imm' instruction.

At the same time, a completely new feature has been
added: when 'r0' is addressed as register 'rA', the last port
used ('*LP') is read, the read value is used instead of r0's
value, and then it is written back to the same port. As
seen later, this feature speed up the implementation of
large filters, requiring just one instruction per tap.

The control instructions of this processor are easy to
understand. First of all, 'call' and 'goto' execute an
absolute jump to a 4K to 64K address in one clock cycle.
As long as only twelve bits are available to give the
destination address, its value is multiplied by 1, 2, 4, 8 or
16, depending on the processor model, thus allowing
larger programs. Consequently, all subroutines must be
aligned to a reachable address, but the assembler can do
it easily using the '#align' directive.

Conditional jumps and returns are a bit different (see
the eight available conditions on table 2, that shows
conditional assignments): they execute their task, but
they wait one clock cycle for arithmetic and logic
operations to finish, and two clock cycles for
multiplications. This way, the use of interleaving 'nop'
instructions is avoided. When unconditional 'jp' or 'ret' is
used, it is executed in one clock cycle.

The access to external data is fast and flexible. The
processor can address up to 256 direct ports, usually
related to physical devices or small memories, maybe
shared with other FPGA processors. When large
amounts of data must be used, the processor implements
a dedicated interface enabling the use of synchronous
FPGA memories like Xilinx BlockRAM or Altera M4K
and M-RAM. It can address up to 64K words per page,
and different pages may be selected using a page-register
controlled through a port. All these accesses are
executed using two clock cycles.

This processor can conditionally load a register with a
constant or the value of another register (see table 2),
and it also implements more functions as shown in
table 3. Right and left shifts are a bit different than

expected because most used shifts are the shortest ones,
thus using shifts by 7, 3, 2 and 1 rather than 8, 4, 2 and 1
it is on average better. The 'max' and 'min' instructions
are also useful, particularly "rN = abs(rN)" is recognized
by the assembler and replaced by "rN = max(rN,–rN)".
All these instructions use two clock cycles for their
execution, like additions and subtractions; their results
are immediately available in the following instruction.

The four multiplying instructions, with optional
positive or negative accumulation, are executed using
only two clock cycles, but the result cannot be used as an
operand, except for accumulation, at the following
instruction. If required, a one clock 'nop' (an assembler
macro replaced by "jp <next-address>") must be added.

Table 2. Conditional assignments of DSPuva18.

OpCode Mnemonic Function

1000 0000 bbbb nnnn rN = {rB,K16} Load a register.

1000 0001 bbbb nnnn ifV rN = {rB,K16} Load if oVerflow.

1000 0010 bbbb nnnn ifEQ rN = {rB,K16} Load if EQual to 0.

1000 0011 bbbb nnnn ifNE rN = {rB,K16} Load if Not Equal to 0.

1000 0100 bbbb nnnn ifGT rN = {rB,K16} Load if Greater Than 0.

1000 0101 bbbb nnnn ifGE rN = {rB,K16} Load if Greater or Equal.

1000 0110 bbbb nnnn ifLE rN = {rB,K16} Load if Less or Equal.

1000 0111 bbbb nnnn ifLT rN = {rB,K16} Load if Less Than 0.

1000 1000 bbbb nnnn rN = –{rB,K16} Load changing sign.

1000 1001 bbbb nnnn ifV rN = –{rB,K16} Load if oVerflow.

1000 1010 bbbb nnnn ifEQ rN = –{rB,K16} Load if EQual to 0.

1000 1011 bbbb nnnn ifNE rN = –{rB,K16} Load if Not Equal to 0.

1000 1100 bbbb nnnn ifGT rN = –{rB,K16} Load if Greater Than 0.

1000 1101 bbbb nnnn ifGE rN = –{rB,K16} Load if Greater or Equal.

1000 1110 bbbb nnnn ifLE rN = –{rB,K16} Load if Less or Equal.

1000 1111 bbbb nnnn ifLT rN = –{rB,K16} Load if Less Than 0.

Table 3. Extra instructions of DSPuva18.

OpCode Mnemonic Function

1001 0000 bbbb nnnn rN = rB >> 7 Right shift seven bits.

1001 0100 bbbb nnnn rN = rB >> 3 Right shift three bits.

1001 1000 bbbb nnnn rN = rB >> 2 Right shift two bits.

1001 1100 bbbb nnnn rN = rB >> 1 Right shift one bit.

1001 0001 bbbb nnnn rN = rB << 7 Left shift seven bits.

1001 0101 bbbb nnnn rN = rB << 3 Left shift three bits.

1001 1001 bbbb nnnn rN = rB << 2 Left shift two bits.

1001 1101 bbbb nnnn rN = reverse rB Reverse all bits.

1001 0010 bbbb nnnn rN = {rN,*LP} and {rB,K16} Logic AND.

1001 0110 bbbb nnnn rN = {rN,*LP} or {rB,K16} Logic OR.

1001 1010 bbbb nnnn rN = {rN,*LP} xor {rB,K16} Logic XOR.

1001 1110 bbbb nnnn rN = not rB Logic NOT.

1001 0011 bbbb nnnn rN = min ({rN,*LP},{rB,K16}) Minimum of two values.

1001 0111 bbbb nnnn rN = max({rN,*LP},{rB,K16}) Maximum of two values.

1001 1011 bbbb nnnn rN = min({rN,*LP},–{rB,K16}) Minimum changing sign.

1001 1111 bbbb nnnn rN = max({rN,*LP},–{rB,K16}) Maximum changing sign.

A program example that implements an infinite

impulse response filter (IIR) is shown below. Most
instructions of this filter execute up to four operations: a
read from last used port (through '*LP'), a write back of
the read value to the same port (so it reads an old sample
or output from a FIFO and returns it to the same FIFO
for the next filter update), a fixed-point 18x18 product
and a positive 32-bit accumulation. This means 37.5
MIPS and 150 MOPS running at 75 MHz.

/*
 Demonstration program of DSPuva18 for FPGAworld'2007
 2007/08/27 Santiago de Pablo (sanpab@eis.uva.es)
*

/

#model E // Programs up to 64K instructions
#range 8 // DSP values between +-8.0
#include “uva18std.h” // Several definitions

// IIR filter implementation:
// Input X values are available at port 200.
// Output Y values are written at port 201.
// Old X values are stored in a small FIFO at port 202.
/

/ Old Y values are stored in a small FIFO at port 203.

 #define IN_X 200
 #define OUT_Y 201
 #define FIFO_X 202

#define FIFO_Y 203

 #define YC1 0.9345
 // Define also YC2...YC4 and XC0...XC5 constants.

0x0000: // Programs begins here after reset
 call InitFilter // Prepare the filter
Loop: call UpdateFilter // 14 + 2x(NX + NY) clks

 jp Loop // Infinite loop (2 MSPS at 70 MHz)

#align
InitFilter:
 // First reset FIFO_X and FIFO_Y (not done here)
 // Then load dummy values as old samples
 r1 = 0.0
 port(FIFO_Y) = r1 // Load four values on FIFO_Y:
 port(FIFO_Y) = r1 // they are y4, y3, y2 & y1.
 port(FIFO_Y) = r1
 port(FIFO_Y) = r1
 port(FIFO_X) = r1 // Load five values on FIFO_X:
 port(FIFO_X) = r1 // they are x5, x4, x3, x2 & x1.
 port(FIFO_X) = r1
 port(FIFO_X) = r1
 port(FIFO_X) = r1
 ret

#align
UpdateFilter:
 r2 = port(FIFO_Y) // Read y4 value (and loose it later)
 r1 = r2 * YC4 // … and multiply y4 by its coefficient
 r1 = r1 + *LP * YC3 // Get y3 and multiply it by its coefficient
 r1 = r1 + *LP * YC2 // Get y2 and multiply it by its coefficient
 r1 = r1 + *LP * YC1 // Get y1 and multiply it by its coefficient
 r2 = port(FIFO_X) // Read x5 value (and loose it later)
 r1 = r1 + r2 * XC5 // … and multiply x5 by its coefficient
 r1 = r1 + *LP * XC4 // Get x4 and multiply it by its coefficient
 r1 = r1 + *LP * XC3 // Get x3 and multiply it by its coefficient
 r1 = r1 + *LP * XC2 // Get x2 and multiply it by its coefficient
 r1 = r1 + *LP * XC1 // Get x1 and multiply it by its coefficient
 r2 = port(IN_X) // Get a new x0 value (from an A/D?)
 r1 = r1 + r2 * XC0 // … and multiply x0 by its coefficient
 port(FIFO_X) = r2 // Put x0 value on its FIFO for later use
 port(FIFO_Y) = r1 // Put y0 value on its FIFO for later use
 port(OUT_Y) = r1 // Output of the IIR filter (to a D/A?)
 ret // Finish

3. ASM++ diagram of DSPuva18

The design of this processor has been entirely done
using ASM++ diagrams. These diagrams, proposed at
[8] and described further here, are an extension of
Algorithmic State Machines [1], [3], a methodology used
forty years ago for the development of microprocessors.
As can be seen with this example, the ASM++ diagrams
are now fully capable of describing whole IP modules.

This diagram and the manually generated equivalent
code use Verilog 2001, but VHDL may be used instead.
An ASM++ compiler that accept standard Verilog and
VHDL languages for input and output is in progress.

The first ASM++ box of this design, as seen below on
Fig. 1, is a "code box", able to introduce Verilog or
VHDL code. It is used in this case to describe the
processor interface.

Figure 1. Design header using Verilog.

Afterwards, a second code box specifies several
internal signals. As long as this box has global meaning,
other signals would be and will be declared later.

Figure 2. Declaration of several signals.

The third box introduces a first difference between

ASM++ and the pure code. It specifies global defaults
for synchronous and asynchronous internal signals and
outputs. If the user does not assign anything to a
synchronous signal in a state the default behavior is to
keep its last value; for an asynchronous signal the
compiler must implement a don't care logic value.
Designer can easily change this default behavior using
this box.

Figure 3. Default values of signals and outputs.

The following two code boxes are a combinational

instruction decoder implemented using a C-like
"#define" compiler directive. Other directives are also
available to include files and other purposes.

Figure 4. Instruction decoder.

After all these definitions, a box is used to specify the
synchronism of this circuit. In this case there is a unique
clock signal, named 'clk', but several clocks may be used
instead. Then, three branches are initiated: the first one is
a state machine named "ControlUnit"; the second one
contains several synchronous and asynchronous
components that assist at any time to the previous state
machine; the last one is the data path of this processor,
also described as an independent thread. Any
dependence between branches may be implemented
using the name of the state of each thread. This example
shows how easily ASM++ diagrams may describe multi-
clocked or multi-threaded circuits.

Figure 5. Parallel circuits description.

The first branch, which state variable is named

'ControlUnit' as seen on Fig. 6, begins with an
asynchronous reset sequence controlled by the active
high 'reset' signal. This box increases the ASM
possibilities: standard diagrams cannot describe properly
reset sequences.

Then, a first state named 'Main', which begins with an
oval "state box", executes several overlapped operations
from the previous instruction and decodes the current
instruction. For 'call', 'goto', 'jp' and 'ret' instructions only
one clock is needed, so the next state is 'Main' again;
other instructions require a 'Second' state.

Figure 6 shows more ASM++ features:
– Synchronous operations, those that are executed

when the current clock cycle finishes, like "SP <=
SP + 1", are described using a rectangular box
anywhere. This is a difference with traditional
ASM diagrams, where only unconditional
operations use these boxes at the beginning of any
clock cycle.

– Asynchronous operations, executed all through the
current clock cycle, like "nextPC <= PC + 1", use a
box with bent sides. This is a nice feature, that
shows the difference in the behavior between
synchronous and asynchronous signals. When
Verilog language is used, the equal operator ('=')
may also be used for asynchronous assertions.

– Conditions are expressed in the same way than
standard ASM diagrams, but also multiple output
decisions are included.

– The use of VHDL/Verilog expressions allows an
easy implementation of complex functions, like a
register file or a returning address stack, that need
vector notation.

Figure 6. Processor control unit (I).

The following state named 'Second', seen at Fig. 7,

executes all computational instructions after receiving
operands from the previous clock cycle. Actually, this
state just activates all the required control signals,
because data path and external devices do the real job.

Figure 7. Processor control unit (II).

Readers are kindly invited to translate this state

machine to HDL code1, either using VHDL or Verilog.

1 During the translation process, at least two processes or always
blocks are needed, one of them for all clk-dependent synchronous
operations and the other one, unconnected from the former, for the
asynchronous operations. ASM++ diagrams join both worlds.

Then, the relationship between ASM++ and HDL arises,
and the advantages of using a graphical tool to design
and/or document complex circuits also becomes clear.

To complete control tasks a second thread is more
than convenient (see Fig. 8). Several operations must be
done during or at the end of all clock cycles. Writing
these operations in the previous thread is at least
uncomfortable and prone to mistakes. Real life circuits
require the possibility of writing parallel threads, but
standard ASM diagrams cannot do it.

A second detail of Fig. 8 is that, from the point of
view of the 'PC' signal, this is a state-less state machine:
it needs no state at all because it has just one state.
Additionally, the only reference to a clock here is the
rectangular box used for 'PC'; in absence of it, this could
be a clock-less thread, a pure-combinational circuit
properly described using ASM++ diagrams.

Figure 8. Processor control unit (III).

Following figures, from 9 to 13, implement the data

path of this processor. First of all, a register file keeps
the 32-bit values of r0 to r15 registers. Its design is based
on two dual-ported distributed memories, allowing up to
four asynchronous reads and one synchronous write on
every clock cycle; only three reads are actually needed.
During the state 'Second', if 'aluCE' signal is asserted,
two operands are stored at register 'regA' and 'regB' for
their operation during the following 'Main' state.

Figure 9. Processor data path (I).

After operand selection, several computational units

calculate different results throughout the clock period: a

right or left shifted value, a logic or arithmetic result [4],
[7], and an update value used for conditional
assignments and maximum and minimum evaluation.

Figure 10. Processor data path (II).

The core of this processor, a fixed-point 18x18

multiplier with 32-bit result, is described below in such a
way that most synthesis tools infer a wired synchronous
multiplier: it registers two operands during one clock
cycle and gives the product of them at the end of the
following cycle. This segmentation stage introduces a
one clock latency, so a 'nop' or any dummy instruction
must be used before retrieving the product result.

Figure 11. Processor data path (III).

When all partial results are available, they are
multiplexed in order to store the final value in the
register file and to update flags. In these diagrams, it is
not important if a signal like 'busN' has been used before
its declaration (see Figs. 9 and 12).

Figure 12. Processor data path (IV).

Figure 13. Processor data path (V).

4. Conclusions

This article has presented a small and easy to
understand digital signal processor developed using
Verilog and ASM++ diagrams for FPGA. Throughout
this paper, the capabilities of ASM++ for the
development and documentation of IP modules has
arisen. Additionally, supervision of complex designs
would be ease when using this methodology. Compared
with classic HDL description, the learning curve of
ASM++ is shorter and the possibility of mixing
synchronous and asynchronous signals is also a great
advantage.

The proposed DSP processor executes all its
instructions in one or two clock cycles, achieving up to
150 MOPS at 75 MHz on Xilinx Spartan3 devices. It
introduces several new features: a variable code length
between 4K and 64K, a variable range at implementation
time between ±1 and ±8 for numerical values, a
transparent access to constants and a built-in read with
write back capability to speed up filter implementation.
This processor is currently been used in power
electronics applications.

5. Acknowledgments

The authors would like to acknowledge the partial
financial support of eZono AG at Jena, Germany, ISEND
SA at Boecillo, Valladolid, Spain, and the regional
government, Junta de Castilla y León, under grants
VA004B06 and VA021B06.

References

[1] C.R. Clare, Designing Logic Using State Machines,
McGraw-Hill, 1973. Referenced by [5].

[2] epYme workgroup, online at http://www.dte.eis.uva.es/
epYme, last updated on August 2007.

[3] D.D. Gajski, Principles of Digital Design, Prentice Hall,
Upper Saddle River, NJ, 1997.

[4] J. Gray, “Designing a Simple FPGA-Optimized RISC
CPU and System-on-a-Chip”, DesignCon’2001, online at
http://www.fpgacpu.org/gr/index.html, 2001.

[5] S. Leibson, “The NMOS II Hybrid Microprocessor:
Fusing silicon, ceramic, and aluminium with rubber baby
buggy bumpers”, online at http://www.hp9825.com/html
/hybrid_microprocessor.html, revised on August 2007.

[6] S. de Pablo et al., “A soft fixed-point Digital Signal
Processor applied in Power Electronics”, FPGAworld
Conference 2005, Stockholm, Sweden, 2005.

[7] S. de Pablo et al., “A very simple 8-bit RISC processor
for FPGA”, FPGAworld Conference 2006, Stockholm,
Sweden, 2006.

[8] S. de Pablo et al., “A proposal for ASM++ diagrams”,
10th Workshop on Design and Diagnostics of Electronic
Circuits and Systems (DDECS 2007), Kraków, Poland,
2007.

