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Abstract-A simple algorithm has been developed to control small 
and large multilevel inverters using Space Vector Modulation.  
It looks for a suitable hexagon near the reference voltage rather 
than the usual three nearest vectors.  Then, switching vectors 
and their duty cycles are computed using straightforward 
equations, independent of the number of levels and easy to use in 
digital microprocessors.  Several simulations have validated this 
method, finding that these duty cycles are exactly the same than 
others, computed using more complex methods. 

I. INTRODUCTION 

Multilevel voltage source inverters (VSI) and its 
technology have experienced a fast growing attention in the 
last decade [1], [2].  Since they were introduced by Nabae et 
al. in 1981 [3] they have increasingly been used due to their 
better performance compared to two-level VSI in medium 
voltage [2], [4] and even low voltage applications [5].  
Advantages of this approach include improved power quality, 
higher voltage capability, lower switching losses, smaller and 
cheaper filtering and enhanced electromagnetic compatibility 
[6].  Most used topologies are diode-clamped (neutral-point 
clamped or multi-point clamped), capacitor-clamped (flying 
capacitors) and cascaded multi-cell with separate dc sources, 
all of them sharing mostly the same control methods [1], [2]. 

The most used control strategies for multilevel VSI are 
multi-carrier based sinusoidal or nonsinusoidal Pulse Width 
Modulation (PWM), Space Vector Modulation (SVM), and 
several offline optimized pulse patterns, for example selective 
harmonic elimination (SHE) [2].  Actually, time based PWM 
and SVM techniques may lead to the same results when 
distorted modulation is used on PWM [7], [8], but SVM may 
offer more flexibility to implement different optimizations, 
for example to decide how to keep balanced all dc sources [9] 
and how to reduce or remove common-mode voltage to avoid 
premature motor bearing failures [10]. 

Initially, SVM technique was extended from its two-level 
version, finding three vectors near a rotating reference vector 
and then solving three linear equations to obtain their on-
times [11]; this method leans on the fact that duty cycles 
depend only on local information, actually the coordinates of 
the three vectors modulated during the sampling period, but 
the weak point is that its computational complexity increases 
dramatically with the number of levels.  Later on, a second 
approach has solved the problem for the general n-level case 
[12]: firstly it normalizes the reference voltages and then it 

uses a nonorthogonal coordinate transformation in such a way 
that the nearest three vectors are found using the integer part 
of the reference voltages on that basis and duty cycles are, in 
fact, their fractional parts; although this algorithm gives valid 
results for any situation, its nonorthogonal transformation 
would be considered unnatural, thus it would be difficult to 
work with such unusual variables.  A third method considers 
an n-level space vector diagram composed by several smaller 
diagrams, so it shifts the origin to a virtual two-level inverter 
near the reference, and it computes duty cycles in situations 
similar to well known two-level inverters [13], [14], [15].  
Eventually, look-up tables are used to store information 
difficult to seize using regular expressions valid for all 
situations [15], [16].  These ideas have been applied also on 
four-leg multilevel VSI [9], [17]. 

This paper presents an important simplification over all 
aforementioned references and provides a general solution for 
multilevel inverters of any size.  It is based on natural 
coordinates, namely ‘ab’-‘bc-‘ca’ [17], [18], rather than usual 
α-β components [15] or other transformations [12], that may 
result harder to implement or more difficult to understand.  
The salient features of the proposed scheme are as follows. 

1) Duty cycles of any n-level inverter are computed using 
only local information, actually a two-level hexagon, rather 
than the usual three nearest vectors. 

2) A joint expression is used to compute duty cycles for all 
six sectors of the hexagon, rather than six sets of expressions. 

3) No trigonometric functions are used, so computations 
are very efficient in digital microprocessors. 

4) No look-up tables are used to compute duty cycles or 
switching states: regular expressions have been found to solve 
these problems efficiently for multilevel VSI of any size. 

Throughout this paper, new expressions are proposed to 
compute duty cycles on two-level inverters and then the 
algorithm is generalized for the general n-level case, finding 
equations that give full flexibility for application specific 
optimizations.  Several simulations have validated this 
algorithm, finding that these duty cycles are exactly the same 
than others, computed using more complex methods. 

II. TWO-LEVEL SPACE VECTOR MODULATION 

The structure of a typical three-phase two-level voltage 
source inverter (VSI) is shown in Fig. 1(a).  The relationship 
between  switching  variables (Sa, Sb, Sc) and  phase-to-neutral 
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Fig. 1.  A two-level inverter (a) and a three-level diode-clamped inverter (b).  
voltages (VaN, VbN, VcN) is given by (1), where Vdc is the bus 
voltage and Sk is '1' or '0' when the upper or lower transistor 
of phase k is on, respectively [11].  Applying the Clarke 
transformation (2) to these voltages, that satisfy VaN + VbN + 
VcN = 0, it leads to a well known space vector V with the same 
instantaneous information in a stationary reference frame α-β.  
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There are eight different vectors for the two-level inverter 

output, named V0 to V7 as defined in Fig. 2, according to the 
eight possible switching states.  To obtain the required output 
space vector vo*, that usually is a rotating vector with 
constant module and pulsation, conduction times of the 
inverter switches are modulated according to the angle and 
magnitude of that reference.  The null vectors VZ1 = V0 and 
VZ2 = V7, and two space vectors adjacent to vo*, VX and VY, 
are chosen and modulated during a short switching time TS 
using the volt-second balance method:  

 
Fig. 2.  Definitions used for two-level Space Vector Modulation. 
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As the values of dZ1 and dZ2 have no effect in (3) because of 

the null magnitude of V0 and V7, solving this equation using 
rectangular coordinates yields to (4):  
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where the matrix arranges the known α-β components of the 
adjacent inverter vectors VX and VY.  Equation (4) can be 
applied, without loss of generality, to a reference phase 
voltage in the range 0 to π/3, thus V1 and V2 will be used 
jointly with V0 and V7 to generate vo*, as shown in Fig. 2.  
Thus, the amount of time for each voltage vector is computed 
by solving the inverse problem (5), leading to known 
equations (6) and (7).  
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Finally, the duty cycle of null vectors is computed:  

YX70Z2Z1Z ddddddd −−=+=+= 1  (8) 
 
Applying this method to all six sectors of Fig. 2, duty 

cycles can be efficiently computed on all situations using 
different sets of equations, each one valid on one triangle.  
These equations are clearly much faster than (9) and (10), 
proposed originally by [19] and later on applied by [6], [9], 
[16] and [20], based on polar coordinates that require 
trigonometric functions:    
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where Vo is the magnitude of the phase-to-neutral reference 
voltage vo* (0 ≤ Vo ≤ 0.577·Vdc in the linear range) and θr is 
the relative angle between vo* and VX (0 ≤ θr ≤ π/3).  The 
advantage of this last method is that only one set of equations 
is required for all six sectors. 

Finally, the switching sequence during TS is usually VZ1 
(25% of dZ), VX (50% of dX), VY (50% of dY), VZ2 (50% of dZ), 
VY (50% of dY), VX (50% of dX) and VZ1 (25% of dZ).  
Moreover, the distribution of dZ may be changed to reduce the 
common mode voltage [21]. 
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III. NEW ALGORITHM FOR TWO-LEVEL INVERTERS 

Duty cycles computed using (6) to (8), and their equivalent 
equations for all six sectors, give full control of two-level 
inverters.  In addition, that known method would be the 
fastest one used to compute SVM duty cycles, but those 
equations have no symmetry, thus it is difficult to apply them 
on multilevel inverters.  Actually, initial methods proposed to 
compute SVM duty cycles on n-level inverters were based on 
that scheme, thus they needed to solve 6·(n–1)2 inverse 
problems to get suitable equations for all triangles [11].  
Obviously, this method increases dramatically the length of 
the algorithm with the number of levels n. 

In order to simplify (6) to (8), the Clarke transformation 
will be used on them, leading to an astonishing simple result 
[22], [23]:  
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These equations are clearly simpler than (6) to (8), and they 

can also be applied to all six sectors, yielding to the 
expressions shown at Table I.  Actually, they also match the 
three heights of the point vo* on the triangle VX - VY - VZ, as 
shown in Fig. 2, leading to a very simple graphical method to 
obtain them (see [23] for more details). 

This direct relationship between line-to-line voltages and 
the space vectors was previously found by Zhou and Wang 
[7], as reported at [22] and [23], but later on they propose to  
 

TABLE I 
PROPOSED EXPRESSIONS TO CONTROL TWO-LEVEL INVERTERS 

Sector 
Duty cycles and 
vector sequences  Sector 

Duty cycles and 
vector sequences 

 

I 
0–π/3 

dX =        vab
*/Vdc 

VX = 100 
 

IV 
π–4π/3 

dX =    – vbc
*/Vdc 

VX = 001 
dY =        vbc

*/Vdc 

VY = 110 
 dY =    – vab

*/Vdc 
VY = 011 

dZ = 1 + vca
*/Vdc 

VZ = 000 & 111 
 dZ = 1 – vca

*/Vdc 
VZ = 000 & 111 

II 
π/3–2π/3 

dX =    – vab
*/Vdc 

VX = 010 
 

V 
4π/3–5π/3 

dX =        vca
*/Vdc 

VX = 001 
dY =    – vca

*/Vdc 
VY = 110 

 dY =        vab
*/Vdc 

VY = 101 
dZ = 1 – vbc

*/Vdc 
VZ = 000 & 111 

 dZ = 1 + vbc
*/Vdc 

VZ = 000 & 111 

III 
2π/3–π 

dX =        vbc
*/Vdc 

VX = 010 
 

VI 
5π/3–2π 

dX =    – vca
*/Vdc 

VX = 100 
dY =        vca

*/Vdc 
VY = 011 

 dY =    – vbc
*/Vdc 

VY = 101 
dZ = 1 + vab

*/Vdc 
VZ = 000 & 111 

 dZ = 1 – vab
*/Vdc 

VZ = 000 & 111 
    

use (9) and (10) for duty cycles computation.  Anyway, 
proposed equations of Table I are not necessarily faster on 
two-level inverters than those obtained when using (6) to (8).  
Actually, in most situations the voltage reference vo* is 
provided using the stationary reference frame α-β, thus 
additional computations are required in this framework to 
preprocess the reference. 

Regardless of which method is faster, the simplicity and 
high level of symmetry of these new equations allows 
achieving further developments.  In fact, a joint expression 
can be found for all six sectors, as shown following.  First of 
all, equation (14) normalizes the line-to-line reference 
voltages to simplify further computations and (15) gets three 
polarities used to identify the sector where the reference 
vector is located.  Then, duty cycles are evaluated by means 
of (16), where polarities of (15) are arranged in a matrix in 
such a way that they select the proper reference voltages, the 
same ones included at Table I.  Finally, required duty cycles 
are sorted with (17) in such a way that commutations are 
minimized.  

uab* = vab* / Vdc 
ubc* = vbc* / Vdc 
uca* = vca* / Vdc 

(14) 

 
if  (uab* ≥ 0.0)   pab = 1   else   pab = –1 
if  (ubc* ≥ 0.0)   pbc = 1   else   pbc = –1 
if  (uca* ≥ 0.0)   pca = 1   else   pca = –1 

(15) 
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if (pab + pbc + pca > 0) 
 dX = dA 
 dY = dB 
else 
 dX = dB 
 dY = dA 

(17) 

 
These equations are clearly different from all previous 

methods, although computed duty cycles match exactly the 
same results, because the solution to this problem is unique. 

 

IV. PROPOSED ALGORITHM FOR N-LEVEL INVERTERS 

In this section, the proposed method for two-level inverters 
is extended to the general case of n-level inverters, leading to 
straightforward and easy to use equations.  Given a reference 
voltage vector specified through its phase-to-neutral voltages 
vo* = (vaN*, vbN*, vcN*) for an n-level VSI, see Fig. 1(b), the 
purpose of this algorithm is to decide which vectors VZ1, VX, 
VY and VZ2 will be modulated during a small switching period 
TS, and compute their duty cycles dX, dY and dZ.  Then, they 
will be applied as described at the end of Section II. 

The first step of this algorithm, partially common with 
other techniques [9], [12], [15], [17] is a normalization 
process (18), where line-to-line reference voltages are 
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computed and then reduced by Vc, which is the full dc bus 
voltage (Vdc) divided by (n – 1).  As long as the sum of the 
three phase voltages is always zero, using their instantaneous 
values is equivalent to use their α-β space components.  

uab* = (vaN* – vbN*) / Vc = vab* / Vc 
ubc* = (vbN* – vcN*) / Vc = vbc* / Vc 
uca* = (vcN* – vaN*) / Vc = vca* / Vc 

(18) 

 
The second step usually consists of looking for the nearest 

three vectors surrounding the reference vector [9], [12], 
selected to minimize the harmonic components of the output 
line voltage [8], [12].  This method will find them later, using 
(23) to (26), but now it will choose a suitable hexagon that 
encloses the reference vector (see Fig. 3).  At any given time, 
up to three different candidates can be the center of such 
hexagon, thus this step is clearly open for different policies 
and/or optimizations. 

Following Holmes et al. [8], [14], the nearest even 
redundant space vector will be selected using (19) to (21) to 
reduce overall commutations (vectors with even redundancy 
are highlighted in Fig. 3).  The location of the hexagon center 
(cab, cbc, cca) is firstly estimated by (19), where normalized 
voltages are rounded to the nearest integer1:  

cab = ⎣ uab* + 0.5 ⎦ 
cbc = ⎣ ubc* + 0.5 ⎦ 
cca = ⎣ uca* + 0.5 ⎦ 

(19) 

 
Afterwards, phase i with the maximum value of |ui*| is 

selected (i = {‘ab’, ‘bc’, ‘ca’}), and indexes j and k are 
assigned to the other two phases.  In addition, two variables 
named even and odd are set to 1 or 0 depending on the parity 
of n.  Then, coordinate ci is changed using (20) in order to set 
the hexagon center on an even redundant space vector, and cj 
and ck are fixed applying (21) to satisfy ci + cj + ck = 0, 
assuring at the same time that the nearest even redundant 
space vector is selected, as shown at Fig. 3.  

ci = ⎣ (ui* + even) / 2.0 ⎦ · 2 + odd (20)  

 
Fig. 3.  Regions used for hexagon selection, using ab-bc-ca coordinates. 

                                                           
1 Expression ⎣x⎦ gets the lower bounded integer of x. 

 
if (|uj – cj| > |uk – ck|) 
 cj = – ci – ck 
else 
 ck = – ci – cj 

(21) 

 
In the example of Fig. 3, the hexagon center is estimated 

using (19) at invalid coordinates (3, 1, –3), and then it is 
modified by (20) and (21) to (2, 1, –3), changing cab because 
the height |uab* – cab| was greater than |ubc* – cbc|.  This 
example demonstrates how simple and powerful can be an 
algorithm when using ab-bc-ca natural coordinates rather 
than usual α-β space components. 

The third step computes the three duty cycles using the 
information of the hexagon centre, but with no detailed 
knowledge of the nearest three vectors, which are found later.  
Actually, this method is equivalent to a local two-level SVM, 
as proposed by [13], [14] and [15], but using a different 
approach because of the hexagon.  First of all it computes the 
relative coordinates of the reference voltage at the hexagon 
using (22).  

wab* = uab* – cab 
wbc* = ubc* – cbc 
wca* = uca* – cca 

(22) 

 
The following steps of computing polarities and sorting 

duty cycles (dX, dY, dZ) is immediate: it can be accomplished 
by means of previously described (15) to (17), just replacing 
absolute reference voltages ui* by their relative counterparts 
wi* (i = {‘ab’, ‘bc’, ‘ca’}).  Herein it is shown the advantage 
of using just one expression for all six sectors.  These 
equations are clearly different from all previous methods, and 
show how natural coordinates do simplify all the process. 

Afterwards, a forth step of this algorithm must choose a 
suitable vector pair VZ1 = (SZ1a, SZ1b, SZ1c) and VZ2 = (SZ2a, 
SZ2b, SZ2c), both located at the hexagon center.  The use of 
small look-up tables has been proposed and successfully 
applied at [15], but using the notation of [8], [9], [12] (see 
Fig. 3) the equations for the general n-level case are very 
simple:  

SZ1a = max(0, cab, –cca) + ρ 
SZ1b = max(0, cbc, –cab) + ρ 
SZ1c = max(0, cca, –cbc) + ρ 

(23) 

 
SZ2a = SZ1a + 1 
SZ2b = SZ1b + 1 
SZ2c = SZ1c + 1 

(24) 

 
where ρ is a free integer due to redundant states.  This 
parameter can be used to select a suitable set of vectors in 
order to balance dc voltages [9] and/or reduce or remove 
common-mode voltage [10], provided that 0 ≤ {SZ1a, SZ1b, 
SZ1c} < {SZ2a, SZ2b, SZ2c} ≤ n – 1 is always satisfied.  Anyway, 
these issues depend on the inverter topology, so they are 
beyond the scope of this paper. 

The last step of this method decides the location of two 
neighbors VX = (SXa, SXb, SXc) and VY = (SYa, SYb, SYc) used 
jointly with VZ1 and VZ2 during the switching period TS.  
Equations (25) and (26) choose them in such a way that one 
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and only one switch changes at any time (be aware that this 
policy may be changed when removing common-mode 
voltage, see [10]) on the sequence VZ1-VX-VY-VZ2-VY-VX-VZ1.  

SXa = SZ1a; if  [ (pab > 0) and (pca < 0) ] SXa += 1 
SXb = SZ1b; if  [ (pbc > 0) and (pab < 0) ] SXb += 1 
SXc = SZ1c; if  [ (pca > 0) and (pbc < 0) ] SXc += 1 

(25) 

 
SYa = SZ1a; if  [ (pab > 0)  or  (pca < 0) ] SYa += 1 
SYb = SZ1b; if  [ (pbc > 0)  or  (pab < 0) ] SYb += 1 
SYc = SZ1c; if  [ (pca > 0)  or  (pbc < 0) ] SYc += 1 

(26) 

 
The last step would map the obtained space vectors to the 

particular switching states of the inverter.  This mapping 
depends on the inverter topology, thus it has not been 
implemented in this work. 

V. ALGORITHM VALIDATION 

At each sampling period, the three nearest vectors and their 
duty cycles are unique, so it does not matter which method is 
used to find and compute them.  The election of one set of 
vectors among several compatible ones (our free parameter 
ρ), and also their distribution on time (which vectors are used 
as VZ1 and VZ2, and also the value of dZ1 compared to dZ2), 
can be changed and results on dc voltage source balance and 
common mode voltage are different accordingly. 

Proposed algorithm has been evaluated in detail by 
simulation, and it has been found that vector selection and 
duty cycles match point by point to others computed using 
other known techniques [12], [15].  The election of the central 
vector (VZ1 and VZ2) obviously differs from time to time. 

Fig. 4 illustrates a result of a simulation of this method 
applied on a two-level inverter in open-loop mode and just in 
the limit of the linear modulation range (m ≡ √2 · Vac / Vdc = 
1.0).  Fig. 5 illustrates the same situation for a nine-level 
inverter.  In both cases the main dc bus was Vdc = 566 V, the 
50 Hz line-to-line output voltage was Vac = 400 V (rms) and 
the switching frequency fS was 6 kHz.  PWM signals were 
generated using a triangular carrier with a resolution of 250 
nanoseconds neglecting dead-band effects.  All output signals 
were sampled for displaying at 200 KSPS. 

VI. CONCLUSIONS 

A new method to compute SVM duty cycles has been 
presented.  It is a fast and straightforward algorithm, valid for 
three-phase multilevel voltage source inverters with any 
number of levels.  A first key idea has been to use 
instantaneous phase information, actually line voltages, rather 
than α-β coordinates, because this election has simplified all 
equations.  A second key point has been looking for a suitable 
hexagon near the reference voltage rather than the usual three 
nearest vectors: it simplifies local computations and eases the 
election of the central space vector.  Free parameters are left 
for application specific optimizations, like common-mode 
voltage rejection and/or balancing of dc sources.  Several 
simulations on different n-level inverters have validated this 
method, which implementation on digital processors is very 
easy and direct. 

 
 

 
Fig. 4.  Simulated output line voltage for a two-level inverter (m = 1.0). 

 

 
 

 
Fig. 5.  Simulated output line voltage for a nine-level inverter (m = 1.0).  
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